A Python package to prepare (download, extract, process input data) for GEOCIF and related models
Note: The instructions below have only been tested on a Linux system
We recommend that you use the conda package manager to install the geoprepare
library and all its
dependencies. If you do not have it installed already, you can get it from the Anaconda distribution
If you intend to download AgERA5 data, you will need to install the CDS API. You can do this by following the instructions here
geoprepare
requires multiple Python GIS packages including gdal
and rasterio
. These packages are not always easy
to install. To make the process easier, you can optionally create a new environment using the
following commands, specify the python version you have on your machine (python >= 3.9 is recommended). we use the pygis
library
to install multiple Python GIS packages including gdal
and rasterio
.
conda create --name <name_of_environment> python=3.x
conda activate <name_of_environment>
conda install -c conda-forge mamba
mamba install -c conda-forge gdal
mamba install -c conda-forge rasterio
mamba install -c conda-forge xarray
mamba install -c conda-forge rioxarray
mamba install -c conda-forge pyresample
mamba install -c conda-forge cdsapi
mamba install -c conda-forge pygis
pip install wget
pip install pyl4c
Install the octvi package to download MODIS data
pip install git+https://github.com/ritviksahajpal/octvi.git
Downloading from the NASA distributed archives (DAACs) requires a personal app key. Users must
configure the module using a new console script, octviconfig
. After installation, run octviconfig
in your command prompt to prompt the input of your personal app key. Information on obtaining app keys
can be found here
pip install --upgrade geoprepare
pip install --upgrade --no-deps --force-reinstall git+https://github.com/ritviksahajpal/geoprepare.git
Navigate to the directory containing setup.py
and run the following command:
pip install .
from geoprepare import geodownload
# Provide full path to the configuration files
# Download and preprocess data
geodownload.run([r"PATH_TO_geobase.txt"])
geoextract.run([r”PATH_TO_geobase.txt”, r”PATH_TO_geoextract.txt”])
* Execute the following code to prepare the data for the crop yield ML model and AgMet graphics
```python
from geoprepare import geomerge
# Merge EO files into one, this is needed to create AgMet graphics and to run the crop yield model
geomerge.run([r"PATH_TO_geobase.txt", r"PATH_TO_geoextract.txt"])
Before running the code above, we need to specify the two configuration files:
geobase.txt
contains configuration settings for downloading and processing the input data.geoextract.txt
contains configuration settings for extracting crop masks and EO variables.NOTE:
dir_base
needs to be changed to your specific directory structure
datasets
: Specify which datasets need to be downloaded and processeddir_base
: Path where to store the downloaded and processed filesstart_year
,end_year
: Specify time-period for which data should be downloaded and processedlogfile
: What directory name to use for the log fileslevel
: Which level to use for loggingparallel_process
: Whether to use multiple CPUsfraction_cpus
: What fraction of available CPUs to use ```python [DATASETS] datasets = [‘NDVI’, ‘AGERA5’, ‘CHIRPS’, ‘CPC’, ‘CHIRPS-GEFS’, ‘NSIDC’]
[PATHS] dir_base = /gpfs/data1/cmongp1/GEOGLAM dir_input = ${dir_base}/Input dir_log = ${dir_base}/log dir_interim = ${dir_input}/intermed dir_download = ${dir_input}/download dir_output = ${dir_base}/Output dir_global_datasets = ${dir_input}/Global_Datasets dir_metadata = ${dir_input}/metadata dir_masks = ${dir_global_datasets}/masks dir_regions = ${dir_global_datasets}/regions dir_regions_shp = ${dir_regions}/shps dir_crop_masks = ${dir_input}/crop_masks dir_models = ${dir_input}/models
[AGERA5] variables = [‘Precipitation_Flux’, ‘Temperature_Air_2m_Max_24h’, ‘Temperature_Air_2m_Min_24h’]
[AVHRR] data_dir = https://www.ncei.noaa.gov/data/avhrr-land-normalized-difference-vegetation-index/access
[CHIRPS] fill_value = -2147483648 prelim = /pub/org/chc/products/CHIRPS-2.0/prelim/global_daily/tifs/p05/ final = /pub/org/chc/products/CHIRPS-2.0/global_daily/tifs/p05/
[CHIRPS-GEFS] fill_value = -2147483648 data_dir = /pub/org/chc/products/EWX/data/forecasts/CHIRPS-GEFS_precip_v12/15day/precip_mean/
[CPC] data_dir = ftp://ftp.cdc.noaa.gov/Datasets
[ESI] data_dir = https://gis1.servirglobal.net//data//esi//
[FLDAS]
[LST] num_update_days = 7
[VHI] data_historic = https://www.star.nesdis.noaa.gov/data/pub0018/VHPdata4users/VHP_4km_GeoTiff/ data_current = https://www.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/Blended_VH_4km/geo_TIFF/
[NDVI] product = MOD09CMG vi = ndvi scale_glam = False scale_mark = True print_missing = False
[VIIRS] product = VNP09CMG vi = ndvi scale_glam = False scale_mark = True print_missing = False
[NSIDC]
[SOIL-MOISTURE] data_dir = https://gimms.gsfc.nasa.gov/SMOS/SMAP/L03/
[FPAR] data_url = https://agricultural-production-hotspots.ec.europa.eu/data/indicators_fpar/fpar/
[LOGGING] level = ERROR
[DEFAULT] logfile = log parallel_process = False fraction_cpus = 0.75 start_year = 2001 end_year = 2024
### geoextract.txt
> **NOTE:** For each country add a new section to this file, using `kenya` as an example
* `countries`: List of countries to process
* `forecast_seasons`: List of seasons to process
* `mask`: Name of file to use as a mask for cropland/croptype
* `redo`: Redo the processing for all days (`True`) or only days with new data (`False`)
* `threshold`: Use a `threshold` value (`True`) or a `percentile` (`False`) on the cropland/croptype mask
* `floor`: Value below which to set the mask to 0
* `ceil`: Value above which to set the mask to 1
* `eo_model`: List of datasets to extract from
```python
[kenya]
category = EWCM
scales = ['admin_1'] ; can be admin_1 (state level) or admin_2 (county level)
growing_seasons = [1] ; 1 is primary/long season, 2 is secondary/short season
crops = ['mz', 'sr', 'ml', 'rc', 'ww', 'tf']
use_cropland_mask = True
[rwanda]
category = EWCM
scales = ['admin_1'] ; can be admin_1 (state level) or admin_2 (county level)
growing_seasons = [1] ; 1 is primary/long season, 2 is secondary/short season
crops = ['mz', 'sr', 'ml', 'rc', 'ww', 'tf']
use_cropland_mask = True
[malawi]
category = EWCM
scales = ['admin_1'] ; can be admin_1 (state level) or admin_2 (county level)
growing_seasons = [1] ; 1 is primary/long season, 2 is secondary/short season
crops = ['mz', 'sr', 'ml', 'rc', 'ww', 'tf']
use_cropland_mask = True
[zambia]
category = EWCM
scales = ['admin_1'] ; can be admin_1 (state level) or admin_2 (county level)
growing_seasons = [1] ; 1 is primary/long season, 2 is secondary/short season
crops = ['mz', 'sr', 'ml', 'rc', 'ww', 'tf']
use_cropland_mask = True
[united_republic_of_tanzania]
category = EWCM
scales = ['admin_1'] ; can be admin_1 (state level) or admin_2 (county level)
growing_seasons = [1] ; 1 is primary/long season, 2 is secondary/short season
crops = ['mz', 'sr', 'ml', 'rc', 'ww', 'tf']
use_cropland_mask = True
[ww]
mask = cropland_v9.tif ; A tif file specifying name of cropland/crop-type mask
[mz]
mask = cropland_v9.tif
[sb]
mask = cropland_v9.tif
[rc]
mask = cropland_v9.tif
[tf]
mask = cropland_v9.tif
[sr]
mask = cropland_v9.tif
[ml]
mask = cropland_v9.tif
[EWCM]
calendar_file = EWCM_2021-6-17.xlsx
[AMIS]
calendar_file = AMISCM_2021-6-17.xlsx
[DEFAULT]
redo = False
threshold = True
floor = 20
ceil = 90
scales = ['admin_1']
growing_seasons = [1]
countries = ['kenya']
forecast_seasons = [2022]
mask = cropland_v9.tif
shp_boundary = EWCM_Level_1.shp
statistics_file = statistics.csv
zone_file = countries.csv
calendar_file = crop_calendar.csv
eo_model = ['ndvi', 'cpc_tmax', 'cpc_tmin', 'chirps', 'chirps_gefs', 'esi_4wk', 'soil_moisture_as1', 'soil_moisture_as2']
import geopandas as gpd
from tqdm import tqdm
from pathlib import Path
from geoprepare.eoaccess import eoaccess
dg = gpd.read_file(PATH_TO_SHAPEFILE, engine="pyogrio")
# Convert to CRS 4326 if not already
if dg.crs != "EPSG:4326":
dg = dg.to_crs("EPSG:4326")
# Iterate over each row of the shapefile
for index, row in tqdm(dg.iterrows(), desc="Iterating over shapefile", total=len(dg)):
# Get bbox from geometry of the row
bbox = row.geometry.bounds
obj = eoaccess.NASAEarthAccess(
dataset=["HLSL30", "HLSS30"],
bbox=bbox,
temporal=(f"{row['year']}-01-01", f"{row['year']}-12-31"),
output_dir=".",
)
obj.search_data()
if obj.results:
obj.download_parallel()
obj = eoaccess.EarthAccessProcessor(
dataset=["HLSL30", "HLSS30"],
input_dir=".",
shapefile=Path(PATH_TO_SHAPEFILE),
)
obj.mosaic()
setup.py
and run the following command:
pipreqs . --force --savepath requirements.txt
mamba env export > environment.yml
python setup.py sdist
twine upload dist/geoprepare-A.B.C.tar.gz
This package was created with Cookiecutter and the giswqs/pypackage project template.